Sabtu, 03 September 2016

Fotosintesis Tumbuhan

Fotosintesis Tumbuhan


Hasil gambar untuk fotosintesis tumbuhan

Tumbuhan bersifat autotrof. Autotrof artinya dapat mensintesis makanan langsung dari senyawa anorganik. Tumbuhan menggunakan karbon dioksida dan air untuk menghasilkan gula dan oksigen yang diperlukan sebagai makanannya. Energi untuk menjalankan proses ini berasal dari fotosintesis. Perhatikan persamaan reaksi yang menghasilkan glukosa berikut ini: 

6H2O + 6CO2 + cahaya → C6H12O6 (glukosa) + 6O2

Glukosa dapat digunakan untuk membentuk senyawa organik lain seperti selulosa dan dapat pula digunakan sebagai bahan bakar. Proses ini berlangsung melalui respirasi seluler yang terjadi baik pada hewan maupun tumbuhan. Secara umum reaksi yang terjadi pada respirasi seluler berkebalikan dengan persamaan di atas. Pada respirasi, gula (glukosa) dan senyawa lain akan bereaksi dengan oksigen untuk menghasilkan karbon dioksida, air, dan energi kimia. Tumbuhan menangkap cahaya menggunakan pigmen yang disebut klorofil. Pigmen inilah yang memberi warna hijau pada tumbuhan. Klorofil terdapat dalam organel yang disebut kloroplas. klorofil menyerap cahaya yang akan digunakan dalam fotosintesis.           

Meskipun seluruh bagian tubuh tumbuhan yang berwarna hijau mengandung kloroplas, namun sebagian besar energi dihasilkan di daun. Di dalam daun terdapat lapisan sel yang disebut mesofil yang mengandung setengah juta kloroplas setiap milimeter perseginya. Cahaya akan melewati lapisan epidermis tanpa warna dan yang transparan, menuju mesofil, tempat terjadinya sebagian besar proses fotosintesis. Permukaan daun biasanya dilapisi oleh kutikula dari lilin yang bersifat anti air untuk mencegah terjadinya penyerapan sinar matahari ataupun penguapan air yang berlebihan.

reaksi terang dan gelap

Proses Fotosintesis

siklus calvin
 
Proses fotosintesis sangat kompleks karena melibatkan semua cabang ilmu pengetahuan alam utama, seperti fisika, kimia, maupun biologi sendiri.  Pada tumbuhan, organ utama tempa berlangsungnya fotosintesis adalah daun. Namun secara umum, semua sel yang memiliki kloroplas berpotensi untuk melangsungkan reaksi ini. Di organel inilah tempat berlangsungnya fotosintesis, tepatnya pada bagian stroma. Hasil fotosintesis (disebut fotosintat) biasanya dikirim ke jaringan-jaringan terdekat terlebih dahulu.

Pada dasarnya, rangkaian reaksi fotosintesis dapat dibagi menjadi dua bagian utama: reaksi terang (karena memerlukan cahaya) dan reaksi gelap (tidak memerlukan cahaya tetapi memerlukan karbon dioksida).

Reaksi Terang

Reaksi terang terjadi pada grana (tunggal: granum), sedangkan reaksi gelap terjadi di dalam stroma. Dalam reaksi terang, terjadi konversi energi cahaya menjadi energi kimia dan menghasilkan oksigen (O2). Reaksi terang adalah proses untuk menghasilkan ATP dan reduksi NADPH2. Reaksi ini memerlukan molekul air dan cahaya matahari. Proses diawali dengan penangkapan foton oleh pigmen sebagai antena.

Reaksi terang melibatkan dua fotosistem yang saling bekerja sama, yaitu fotosistem I dan II. Fotosistem I (PS I) berisi pusat reaksi P700, yang berarti bahwa fotosistem ini optimal menyerap cahaya pada panjang gelombang 700 nm, sedangkan fotosistem II (PS II) berisi pusat reaksi P680 dan optimal menyerap cahaya pada panjang gelombang 680 nm.

Mekanisme reaksi terang diawali dengan tahap dimana fotosistem II menyerap cahaya matahari sehingga elektron klorofil pada PS II tereksitasi dan menyebabkan muatan menjadi tidak stabil. Untuk menstabilkan kembali, PS II akan mengambil elektron dari molekul H2O yang ada disekitarnya. Molekul air akan dipecahkan oleh ion mangan (Mn) yang bertindak sebagai enzim. Hal ini akan mengakibatkan pelepasan H+ di lumen tilakoid. Dengan menggunakan elektron dari air, selanjutnya PS II akan mereduksi plastokuinon (PQ) membentuk PQH2. Plastokuinon merupakan molekul kuinon yang terdapat pada membran lipid bilayer tilakoid. Plastokuinon ini akan mengirimkan elektron dari PS II ke suatu pompa H+ yang disebut sitokrom b6-f kompleks. Reaksi keseluruhan yang terjadi di PS II adalah:2H2O + 4 foton + 2PQ + 4H- → 4H+ + O2 + 2PQH2

Sitokrom b6-f kompleks berfungsi untuk membawa elektron dari PS II ke PS I dengan mengoksidasi PQH2 dan mereduksi protein kecil yang sangat mudah bergerak dan mengandung tembaga, yang dinamakan plastosianin (PC). Kejadian ini juga menyebabkan terjadinya pompa H+ dari stroma ke membran tilakoid. Reaksi yang terjadi pada sitokrom b6
-f kompleks adalah: 2PQH2 + 4PC(Cu2+) → 2PQ + 4PC(Cu+) + 4 H+ (lumen).

Reaksi Terang dari fotosintesis dalam membran Tilakoid

Elektron dari sitokrom b6-f kompleks akan diterima oleh fotosistem I. Fotosistem ini menyerap energi cahaya terpisah dari PS II, tapi mengandung kompleks inti terpisahkan, yang menerima elektron yang berasal dari H2O melalui kompleks inti PS II lebih dahulu. Sebagai sistem yang bergantung pada cahaya, PS I berfungsi mengoksidasi plastosianin tereduksi dan memindahkan elektron ke protein Fe-S larut yang disebut feredoksin. Reaksi keseluruhan pada PS I adalah: Cahaya + 4PC(Cu+) + 4Fd(Fe3+) → 4PC(Cu2+) + 4Fd(Fe2+) Selanjutnya elektron dari feredoksin digunakan dalam tahap akhir pengangkutan elektron untuk mereduksi NADP+ dan membentuk NADPH. Reaksi ini dikatalisis dalam stroma oleh enzim feredoksin-NADP+ reduktase. Reaksinya adalah: 4Fd (Fe2+) + 2NADP+ + 2H+ → 4Fd (Fe3+) + 2NADPH Ion H+ yang telah dipompa ke dalam membran tilakoid akan masuk ke dalam ATP sintase. ATP sintase akan menggandengkan pembentukan ATP dengan pengangkutan elektron dan H+ melintasi membran tilakoid. Masuknya H+ pada ATP sintase akan membuat ATP sintase bekerja mengubah ADP dan fosfat anorganik (Pi) menjadi ATP. Reaksi keseluruhan yang terjadi pada reaksi terang adalah sebagai berikut: Sinar + ADP + Pi + NADP+ + 2H2O → ATP + NADPH + 3H+ + O2Sedangkan dalam reaksi gelap terjadi seri reaksi siklik yang membentuk gula dari bahan dasar CO2 dan energi (ATP dan NADPH). Energi yang digunakan dalam reaksi gelap ini diperoleh dari reaksi terang. 

Pada proses reaksi gelap tidak dibutuhkan cahaya matahari. Reaksi gelap bertujuan untuk mengubah senyawa yang mengandung atom karbon menjadi molekul gula. Dari semua radiasi matahari yang dipancarkan, hanya panjang gelombang tertentu yang dimanfaatkan tumbuhan untuk proses fotosintesis, yaitu panjang gelombang yang berada pada kisaran cahaya tampak (380-700 nm). Cahaya tampak terbagi atas cahaya merah (610 - 700 nm), hijau kuning (510 - 600 nm), biru (410 - 500 nm) dan violet (< 400 nm).[20] Masing-masing jenis cahaya berbeda pengaruhnya terhadap fotosintesis. Hal ini terkait pada sifat pigmen penangkap cahaya yang bekerja dalam fotosintesis. Pigmen yang terdapat pada membran grana menyerap cahaya yang memiliki panjang gelombang tertentu. Pigmen yang berbeda menyerap cahaya pada panjang gelombang yang berbeda. Kloroplas mengandung beberapa pigmen. Sebagai contoh, klorofil a terutama menyerap cahaya biru-violet dan merah. Klorofil b menyerap cahaya biru dan oranye dan memantulkan cahaya kuning-hijau. Klorofil a berperan langsung dalam reaksi terang, sedangkan klorofil b tidak secara langsung berperan dalam reaksi terang. Proses absorpsi energi cahaya menyebabkan lepasnya elektron berenergi tinggi dari klorofil a yang selanjutnya akan disalurkan dan ditangkap oleh akseptor elektron. Proses ini merupakan awal dari rangkaian panjang reaksi fotosintesis.

Reaksi Gelap (Siklus Calvin) dan fiksasi karbon

            Reaksi gelap terjadi pada stroma kloroplas yang dapat (bukan harus) berlangsung dalam gelap, karena enzim-enzim untuk fiksasi CO2  pada stroma kloroplas tidak memerlukan cahaya tetapi membutuhkan ATP dan NADPH yang menghasilkan dari reaksi terang. Reaksi gelap pada tumbuhan dapat terjadi melalui dua jalur, yaitu siklus Calvin-Benson dan siklus Hatch-Slack. Pada siklus Calvin-Benson tumbuhan mengubah senyawa ribulosa 1,5 bisfosfat menjadi senyawa dengan jumlah atom karbon tiga yaitu senyawa 3-phosphogliserat. Oleh karena itulah tumbuhan yang menjalankan reaksi gelap melalui jalur ini dinamakan tumbuhan C-3. Penambatan CO2 sebagai sumber karbon pada tumbuhan ini dibantu oleh enzim rubisco. Tumbuhan yang reaksi gelapnya mengikuti jalur Hatch-Slack disebut tumbuhan C-4 karena senyawa yang terbentuk setelah penambatan CO2 adalah oksaloasetat yang memiliki empat atom karbon. Enzim yang berperan adalah phosphoenolpyruvate carboxilase. 

Mekanisme siklus Calvin-Benson dimulai dengan fiksasi CO2 oleh ribulosa difosfat karboksilase (RuBP) membentuk 3-fosfogliserat. RuBP merupakan enzim alosetrik yang distimulasi oleh tiga jenis perubahan yang dihasilkan dari pencahayaan kloroplas. Pertama, reaksi dari enzim ini distimulasi oleh peningkatan pH. Jika kloroplas diberi cahaya, ion H+ ditranspor dari stroma ke dalam tilakoid menghasilkan peningkatan pH stroma yang menstimulasi enzim karboksilase, terletak di permukaan luar membran tilakoid. Kedua, reaksi ini distimulasi oleh Mg2+, yang memasuki stroma daun sebagai ion H+, jika kloroplas diberi cahaya. Ketiga, reaksi ini distimulasi oleh NADPH, yang dihasilkan oleh fotosistem I selama pemberian cahaya.

            Fiksasi CO2 ini merupakan reaksi gelap yang distimulasi oleh pencahayaan kloroplas. Fikasasi CO2 melewati proses karboksilasi, reduksi, dan regenerasi. Karboksilasi melibatkan penambahan CO2 dan H2O ke RuBP membentuk dua molekul 3-fosfogliserat (3-PGA). Kemudian pada fase reduksi, gugus karboksil dalam 3-PGA direduksi menjadi 1 gugus aldehida dalam 3-fosforgliseradehida (3-Pgaldehida). Reduksi ini tidak terjadi secara langsung, tapi gugus karboksil dari 3-PGA pertama-tama diubah menjadi ester jenis anhidrida asam pada asam 1,3-bifosfogliserat (1,3-bisPGA) dengan penambahan gugus fosfat terakhir dari ATP. ATP ini timbul dari fotofosforilasi dan ADP yang dilepas ketika 1,3-bisPGA terbentuk, yang diubah kembali dengan cepat menjadi ATP oleh reaksi fotofosforilasi tambahan. Bahan pereduksi yang sebenarnya adalah NADPH, yang menyumbang 2 elektron. Secara bersamaan, Pi dilepas dan digunakan kembali untuk mengubah ADP menjadi ATP.

            Pada fase regenerasi, yang diregenerasi adalah RuBP yang diperlukan untuk bereaksi dengan CO2 tambahan yang berdifusi secara konstan ke dalam dan melalui stomata. Pada akhir reaksi Calvin, ATP ketiga yang diperlukan bagi tiap molekul CO2 yang ditambat, digunakan untuk mengubah ribulosa-5-fosfat menjadi RuBP, kemudian daur dimulai lagi.

Tiga putaran daur akan menambatkan 3 molekul CO2 dan produk akhirnya adalah 1,3-Pgaldehida. Sebagian digunakan kloroplas untuk membentuk pati, sebagian lainnya dibawa keluar. Sistem ini membuat jumlah total fosfat menjadi konstan di kloroplas, tetapi menyebabkan munculnya triosafosfat di sitosol. Triosa fosfat digunakan sitosol untuk membentuk sukrosa. 

Perbedaan siklus crebs dan siklus calvin

A. perbedaan siklus crebs dan calvin

Jalur biokimia adalah proses yang sangat penting untuk mempertahankan kehidupan di Bumi. Siklus Krebs dan Siklus Calvin adalah dua jalur biokimia yang sangat penting terjadi di dalam organel sel.
Kedua proses ini siklik, tetapi ada banyak perbedaan antara Siklus Krebs dan Siklus Calvin. Tempat-tempat dimana proses ini berlangsung, dan konsumsi atau produksi energi yang berbeda satu sama lain.
Artikel ini akan mengulas termasuk perbedaan tambahan antara Siklus Krebs dan Siklus Calvin tersebut yang akan menarik untuk diikuti.

Apa itu Siklus Krebs?

Siklus Krebs hanyalah sebuah bagian dari proses respirasi aerobik yang berlangsung dalam sel. Produksi karbon dioksida dan ATP (adenosine triphosphate) dengan beberapa produk samping lainnya berlangsung selama seluruh proses respirasi sel dan siklus Krebs merupakan bagian penting dari itu.
Organisme menyimpan energi dalam bentuk ATP. Proses ini dikenal dengan banyak nama yang berbeda seperti siklus sitrat asam, siklus asam Trikarboksilat, atau siklus Szent-Gyorgyi-Krebs, tapi semua nama-nama ini disebut dalam satu proses yang sama. Karena banyak jenis organisme yang aerobik (tumbuhan, hewan, mikroorganisme), siklus Krebs berlangsung di semua organisme tersebut.
Siklus Krebs merupakan langkah penting dari jalur pernapasan di mana asetil koenzim A dipecah dengan oksigen yang mengarah untuk melepaskan energi untuk menghasilkan molekul ATP. Namun, Asetil koenzim A adalah dihasilkan dari substrat pernapasan seperti glukosa, asam amino, atau lemak.
Namun, tidak beroperasi tanpa adanya oksigen. Substrat pernapasan dipecah dalam siklus Krebs. Karena siklus Krebs melibatkan baik pemecahan (katabolik) dan sintesis (anabolik) langkah-langkahnya, yang dikenal sebagai jalur amphibolik. Seluruh proses telah dinamai Hans Krebs, yang memenangkan Hadiah Nobel pada tahun 1953 yang menemukan itu.

Apa itu Siklus Calvin?

Siklus Calvin merupakan langkah penting dari reaksi gelap fotosintesis yang terjadi pada stroma dari kloroplas tanaman hijau. Siklus Calvin adalah jalur biokimia siklik dimana oksigen diproduksi, dan karbon dioksida digunakan. Sesuai definisi, siklus Calvin adalah seperangkat reaksi yang terjadi dalam reaksi gelap fotosintesis, yang berarti bahwa tidak memerlukan sinar matahari. Aktivasi elektron tidak terjadi dalam siklus Calvin, tetapi kebutuhan energi yang diperlukan untuk proses tersebut dipenuhi oleh konsumsi ATP. Secara keseluruhan, itu adalah jalur anabolik, yang membentuk glukosa dari karbon dioksida dan air. Namun, karbohidrat yang dihasilkan dalam siklus Calvin bukan gula heksosa (glukosa dengan enam karbon) sesuai dengan buku teks terbaru, tetapi mereka gula triose fosfat (tiga karbon), alias triose fosfat. Kemudian, itu mengarah untuk menghasilkan gula heksosa dalam mitokondria.
Siklus Krebs
Siklus Krebs
Siklus Calvin
Siklus Calvin
Perbedaan Siklus Krebs vs Siklus Calvin
Siklus Krebs
Siklus Calvin
Bagian dari proses respirasi aerobikBagian dari reaksi gelap fotosintesis
Terjadi pada matriks mitokondriaTerjadi pada stroma kloroplas
Mengarah untuk mensintesis ATPATP dihabiskan selama proses
Terjadi di semua organisme dengan respirasi aerobikTerjadi hanya dalam tumbuhan fotosintesis
Karbon dioksida akan diproduksiKarbon dioksida akan digunakan
Proses ini tidak berlangsung tanpa oksigenProses ini tidak menuntut adanya oksigen

Permainan permainan masa kecil

Tahun 90an identik dengan permainan permainan yg melegenda nggak heran kita tak pernah lupa permainan tersebut hehehe kenangan masa kecil masih ceria yuk kita liha saja apa permainan masa kecil yg menyenangkan :D

1. PETAK UMPET

Hasil gambar untuk permainan masa lalu

2. BAMBU RUNCING MERCON

Hasil gambar untuk permainan masa lalu

3. KELERENG

Hasil gambar untuk permainan masa lalu

4. MONOPOLI

Hasil gambar untuk permainan masa lalu

5. KAPAL KAPALAN

Hasil gambar untuk permainan masa lalu

6. DAKON

Hasil gambar untuk permainan masa lalu

7. BALON MENIUP

Hasil gambar untuk permainan masa lalu

8. ENGRANG

Hasil gambar untuk permainan masa lalu

9. GASING TRADISIONAL

Hasil gambar untuk permainan masa lalu

10. BALAP KARUNG

Hasil gambar untuk permainan masa lalu

11. SPACE

Hasil gambar untuk permainan masa lalu

12. TETRIS

Hasil gambar untuk permainan masa lalu

13. YOYO

Hasil gambar untuk permainan masa lalu

14. GOBAG SODOR

Hasil gambar untuk permainan masa lalu

15. MAIN BOLA

Hasil gambar untuk permainan masa lalu MAIN BOLA

16. BALAPAN BAN

Hasil gambar untuk permainan masa lalu

Cukup menyenangkan yah....

Zat Padat Terlarut (Total Dissolved Solids) pada Air Bersih

Halo guys apakah kamu sudah tahu apakah itu zat padat terlarut (TDS) pada air bersih atau air limbah? Yuk langsung saja kita bahas mengenai ...